MathStudy Notes

Fractions and Decimals

Detailed Notes on Fractions and Decimals

1. Introduction

Fractions and decimals are two common ways of representing non-integer numbers. Understanding how to convert between fractions and decimals, as well as performing operations with them, is essential for many areas of mathematics. In these notes, we cover the basic definitions, conversion methods, and operations, along with 50 examples (with solutions) to illustrate the concepts.

2. Basic Definitions

Fractions

A fraction represents a part of a whole and is written in the form:

\( \frac{a}{b} \quad (b \neq 0) \)

where \( a \) is the numerator and \( b \) is the denominator.

Decimals

A decimal is another way of expressing fractions, particularly those with denominators that are powers of 10. For example:

\( 0.75 \)

represents the fraction \( \frac{75}{100} \), which can be simplified to \( \frac{3}{4} \).

3. Converting Between Fractions and Decimals

Fraction to Decimal

To convert a fraction to a decimal, divide the numerator by the denominator.

\(\frac{a}{b} = a \div b\)

Decimal to Fraction

To convert a decimal to a fraction, write the decimal over the appropriate power of 10 and then simplify.

0.125 = \(\frac{125}{1000}\) = \(\frac{1}{8}\)

4. Operations with Fractions and Decimals

Operations with Fractions

Addition/Subtraction: Find a common denominator, convert fractions, and then add/subtract.

Multiplication: Multiply the numerators and denominators:

\(\frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}\)

Division: Multiply by the reciprocal:

\(\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times \frac{d}{c}\)

Operations with Decimals

Operations with decimals are similar to whole numbers, but it is important to align the decimal points for addition and subtraction. Multiplication and division follow similar rules to whole numbers, with adjustments for the decimal places.

5. 50 Examples with Solutions

  1. Example 1: Converting Fraction to Decimal
    Convert \( \frac{1}{2} \) to a decimal.
    Solution: \( \frac{1}{2} = 1 \div 2 = 0.5 \)
  2. Example 2: Converting Fraction to Decimal
    Convert \( \frac{3}{4} \) to a decimal.
    Solution: \( \frac{3}{4} = 3 \div 4 = 0.75 \)
  3. Example 3: Converting Fraction to Decimal
    Convert \( \frac{1}{4} \) to a decimal.
    Solution: \( \frac{1}{4} = 1 \div 4 = 0.25 \)
  4. Example 4: Converting Fraction to Decimal
    Convert \( \frac{2}{5} \) to a decimal.
    Solution: \( \frac{2}{5} = 2 \div 5 = 0.4 \)
  5. Example 5: Converting Fraction to Decimal
    Convert \( \frac{3}{5} \) to a decimal.
    Solution: \( \frac{3}{5} = 3 \div 5 = 0.6 \)
  6. Example 6: Converting Fraction to Decimal
    Convert \( \frac{1}{8} \) to a decimal.
    Solution: \( \frac{1}{8} = 1 \div 8 = 0.125 \)
  7. Example 7: Converting Fraction to Decimal
    Convert \( \frac{3}{8} \) to a decimal.
    Solution: \( \frac{3}{8} = 3 \div 8 = 0.375 \)
  8. Example 8: Converting Fraction to Decimal
    Convert \( \frac{5}{8} \) to a decimal.
    Solution: \( \frac{5}{8} = 5 \div 8 = 0.625 \)
  9. Example 9: Converting Fraction to Decimal
    Convert \( \frac{7}{8} \) to a decimal.
    Solution: \( \frac{7}{8} = 7 \div 8 = 0.875 \)
  10. Example 10: Converting Fraction to Decimal
    Convert \( \frac{1}{10} \) to a decimal.
    Solution: \( \frac{1}{10} = 1 \div 10 = 0.1 \)
  11. Example 11: Converting Fraction to Decimal
    Convert \( \frac{3}{10} \) to a decimal.
    Solution: \( \frac{3}{10} = 3 \div 10 = 0.3 \)
  12. Example 12: Converting Fraction to Decimal
    Convert \( \frac{7}{10} \) to a decimal.
    Solution: \( \frac{7}{10} = 7 \div 10 = 0.7 \)
  13. Example 13: Adding Fractions
    Compute \( \frac{1}{2} + \frac{1}{4} \).
    Solution: Find a common denominator: \( \frac{1}{2} = \frac{2}{4} \), so \( \frac{2}{4} + \frac{1}{4} = \frac{3}{4} \). In decimal, \( \frac{3}{4} = 0.75 \).
  14. Example 14: Subtracting Fractions
    Compute \( \frac{3}{4} - \frac{1}{2} \).
    Solution: \( \frac{3}{4} - \frac{2}{4} = \frac{1}{4} = 0.25 \).
  15. Example 15: Multiplying Fractions
    Compute \( \frac{1}{2} \times \frac{2}{3} \).
    Solution: \( \frac{1 \times 2}{2 \times 3} = \frac{2}{6} = \frac{1}{3} \approx 0.333 \).
  16. Example 16: Dividing Fractions
    Compute \( \frac{3}{4} \div \frac{1}{2} \).
    Solution: Multiply by the reciprocal: \( \frac{3}{4} \times \frac{2}{1} = \frac{6}{4} = \frac{3}{2} = 1.5 \).
  17. Example 17: Simplifying a Fraction
    Simplify \( \frac{8}{12} \).
    Solution: Divide numerator and denominator by 4: \( \frac{8\div4}{12\div4} = \frac{2}{3} \approx 0.667 \).
  18. Example 18: Converting a Repeating Decimal to Fraction
    Express \( 0.\overline{3} \) as a fraction.
    Solution: \( 0.\overline{3} = \frac{1}{3} \).
  19. Example 19: Converting a Repeating Decimal to Fraction
    Express \( 0.\overline{6} \) as a fraction.
    Solution: \( 0.\overline{6} = \frac{2}{3} \).
  20. Example 20: Adding Fractions with Different Denominators
    Compute \( \frac{1}{3} + \frac{1}{4} \).
    Solution: Common denominator is 12: \( \frac{4}{12} + \frac{3}{12} = \frac{7}{12} \approx 0.5833 \).
  21. Example 21: Subtracting Fractions with Different Denominators
    Compute \( \frac{5}{6} - \frac{1}{4} \).
    Solution: Common denominator is 12: \( \frac{10}{12} - \frac{3}{12} = \frac{7}{12} \approx 0.5833 \).
  22. Example 22: Multiplying Mixed Numbers
    Compute \( 1\frac{1}{2} \times 2\frac{1}{3} \).
    Solution: Convert to improper fractions: \( \frac{3}{2} \times \frac{7}{3} = \frac{21}{6} = 3.5 \).
  23. Example 23: Dividing Mixed Numbers
    Compute \( 2\frac{1}{2} \div 1\frac{1}{4} \).
    Solution: Convert: \( \frac{5}{2} \div \frac{5}{4} = \frac{5}{2} \times \frac{4}{5} = 2 \).
  24. Example 24: Converting a Mixed Number to Decimal
    Convert \( 3\frac{1}{4} \) to a decimal.
    Solution: \( 3\frac{1}{4} = \frac{13}{4} = 3.25 \).
  25. Example 25: Decimal Addition
    Compute \( 0.5 + 0.75 \).
    Solution: \( 0.5 + 0.75 = 1.25 \).
  26. Example 26: Decimal Subtraction
    Compute \( 1.25 - 0.5 \).
    Solution: \( 1.25 - 0.5 = 0.75 \).
  27. Example 27: Decimal Multiplication
    Compute \( 0.5 \times 0.4 \).
    Solution: \( 0.5 \times 0.4 = 0.20 \).
  28. Example 28: Decimal Division
    Compute \( 0.75 \div 0.25 \).
    Solution: \( 0.75 \div 0.25 = 3 \).
  29. Example 29: Converting a Repeating Decimal
    Express \( 0.\overline{81} \) as a fraction.
    Solution: \( 0.\overline{81} = \frac{81}{99} = \frac{9}{11} \approx 0.8181 \).
  30. Example 30: Converting a Decimal to a Fraction
    Convert \( 0.125 \) to a fraction.
    Solution: \( 0.125 = \frac{125}{1000} = \frac{1}{8} \).
  31. Example 31: Adding Fractions
    Compute \( \frac{2}{5} + \frac{1}{10} \).
    Solution: \( \frac{2}{5} = \frac{4}{10} \) and \( \frac{4}{10} + \frac{1}{10} = \frac{5}{10} = \frac{1}{2} = 0.5 \).
  32. Example 32: Subtracting Fractions
    Compute \( \frac{7}{10} - \frac{2}{5} \).
    Solution: \( \frac{2}{5} = \frac{4}{10} \) so \( \frac{7}{10} - \frac{4}{10} = \frac{3}{10} = 0.3 \).
  33. Example 33: Multiplying Fractions
    Compute \( \frac{3}{5} \times \frac{2}{3} \).
    Solution: \( \frac{3 \times 2}{5 \times 3} = \frac{6}{15} = \frac{2}{5} = 0.4 \).
  34. Example 34: Dividing Fractions
    Compute \( \frac{3}{4} \div \frac{3}{8} \).
    Solution: \( \frac{3}{4} \times \frac{8}{3} = \frac{24}{12} = 2 \).
  35. Example 35: Simplifying a Fraction
    Simplify \( \frac{15}{35} \).
    Solution: Divide numerator and denominator by 5: \( \frac{15\div5}{35\div5} = \frac{3}{7} \approx 0.4286 \).
  36. Example 36: Converting a Fraction to Decimal
    Convert \( \frac{2}{7} \) to a decimal.
    Solution: \( \frac{2}{7} \approx 0.2857 \).
  37. Example 37: Converting a Fraction to Decimal
    Convert \( \frac{5}{7} \) to a decimal.
    Solution: \( \frac{5}{7} \approx 0.7143 \).
  38. Example 38: Adding Decimals
    Compute \( 0.333 + 0.667 \).
    Solution: \( 0.333 + 0.667 = 1.000 \).
  39. Example 39: Subtracting Decimals
    Compute \( 0.875 - 0.125 \).
    Solution: \( 0.875 - 0.125 = 0.750 \).
  40. Example 40: Multiplying Decimals
    Compute \( 0.25 \times 0.4 \).
    Solution: \( 0.25 \times 0.4 = 0.1 \).
  41. Example 41: Dividing Decimals
    Compute \( 0.6 \div 0.2 \).
    Solution: \( 0.6 \div 0.2 = 3 \).
  42. Example 42: Converting a Mixed Number to Decimal
    Convert \( 2\frac{3}{5} \) to a decimal.
    Solution: \( 2\frac{3}{5} = \frac{13}{5} = 2.6 \).
  43. Example 43: Converting a Decimal to a Fraction
    Express \( 0.2 \) as a fraction.
    Solution: \( 0.2 = \frac{2}{10} = \frac{1}{5} \).
  44. Example 44: Converting a Decimal to a Fraction
    Express \( 0.75 \) as a fraction.
    Solution: \( 0.75 = \frac{75}{100} = \frac{3}{4} \).
  45. Example 45: Converting a Fraction to Decimal
    Convert \( \frac{9}{10} \) to a decimal.
    Solution: \( \frac{9}{10} = 9 \div 10 = 0.9 \).
  46. Example 46: Multiplying Mixed Numbers
    Compute \( 1\frac{1}{3} \times 2\frac{2}{3} \).
    Solution: Convert to improper fractions: \( \frac{4}{3} \times \frac{8}{3} = \frac{32}{9} \approx 3.56 \).
  47. Example 47: Dividing Mixed Numbers
    Compute \( 3\frac{1}{2} \div 1\frac{2}{3} \).
    Solution: Convert to improper fractions: \( \frac{7}{2} \div \frac{5}{3} = \frac{7}{2} \times \frac{3}{5} = \frac{21}{10} = 2.1 \).
  48. Example 48: Adding Mixed Numbers
    Compute \( 1\frac{1}{4} + 2\frac{2}{4} \).
    Solution: Convert: \( 1\frac{1}{4} = \frac{5}{4} \) and \( 2\frac{2}{4} = \frac{10}{4} \). Then, \( \frac{5}{4} + \frac{10}{4} = \frac{15}{4} = 3.75 \).
  49. Example 49: Subtracting Mixed Numbers
    Compute \( 4\frac{3}{4} - 2\frac{1}{2} \).
    Solution: Convert: \( 4\frac{3}{4} = \frac{19}{4} \) and \( 2\frac{1}{2} = \frac{5}{2} = \frac{10}{4} \). Then, \( \frac{19}{4} - \frac{10}{4} = \frac{9}{4} = 2.25 \).
  50. Example 50: Converting a Decimal to a Simplified Fraction
    Convert \( 0.625 \) to a fraction.
    Solution: \( 0.625 = \frac{625}{1000} = \frac{5}{8} \).

6. Summary

In these notes, we reviewed the definitions of fractions and decimals, learned how to convert between the two, and performed various operations such as addition, subtraction, multiplication, and division. The 50 examples provided illustrate a wide range of conversions and operations, ensuring a thorough understanding of fractions and decimals.

Shares:

Related Posts

Leave a Reply

Your email address will not be published. Required fields are marked *